

Top Quark Physics at DØ

Kenneth Johns
University of Arizona
for the DØ Collaboration

Top Talk

- Why is this compelling physics?
 - Top is coupled
 - Through EW radiative corrections, the W mass depends on the top mass and Higgs mass
 - Top is heavy
 - Top couples to the Higgs with coupling strength ? (1)
 - ◆ Top is free
 - Top decay time < hadronization time
 - Top is unexplored
 - We measured the t-tbar production cross section and top mass but not much else
 - ◆ Top is a window
 - Top decays to MSSM Higgs?
 - Topcolor-assisted technicolor?

Run I Top Cross Section

- Updated leptonic cross sections
- Comparison with theory

Run I Top Mass

• $m_t = 174.3 \pm 5.1 \text{ GeV/c}^2$

Search for t-tbar Resonances (Run I)

- Motivation is to investigate models that dynamically break EW symmetry
- An example is topcolorassisted technicolor which implies the existence of a heavy Z' that strongly couples to t-tbar pairs
- Search for narrow resonances X -> t-tbar (model independent) in leptons plus jets sample

 Perform 3C kinematic fit using m_W and m_t as constraints

Search for t-tbar Resonances (Run I)

- Use Bayesian statistics to derive posterior probability distributions P(n|D,K) by fitting m_{t-tbar} from data to weighted sum of three sources
- No statistically significant excess is observed
- Writing n_X=A· L_{int}· s_X· B (where A is the acceptance) we can define s_XB at 95% CL

• For $m_X = 600 \text{ GeV/c}^2$

Search for t-tbar Resonances (Run I)

• We exclude a narrow, leptophobic X boson with $m_{\rm X} < 560~{\rm GeV/c^2}$

- Systematic uncertainties are accounted for by convoluting the posterior probability with a Gaussian prior for A· L_{int}
- Systematic sources
 - ◆ ISR/FSR (16%)
 - ◆ PDF (15%)
 - Luminosity (4.3%)
 - Jet energy scale (5.2%)
 - ◆ Trigger/ID efficiencies (3.5/3.8 %)

New Analysis Methods for Top

- Similar in spirit to Dalitz et al.
 - For each event, a probability distribution is calculated using the full kinematic information in the event except MET
 - The probability is calculated using the matrix element for production and decay

$$P_{t\bar{t}} = \int d\mathbf{r}_1 dm_1^2 dM_1^2 dM_2^2 dM_2^2 \sum_{comb,\mathbf{n}} |M|^2 \frac{f(q_1)f(q_2)}{|q_1| ||q_2|} \mathbf{f}_6 W(x, y)$$

- Detector acceptance, detector resolution, and background is accounted for as well
- Leads to much improved S/B and reduced statistical uncertainty in m_t
- See talk by Juan Estrada on Friday

DØ Status

- All detector systems fully operational
- But many L1/L2/L3 triggers are continuing commissioning
 - L1/L2/L3 rate = 400/200/40 Hz
- Goal is analysis of 50 pb⁻¹ for spring conferences

Impact Parameter (IP) Resolution

 With initial silicon and no central fiber tracker alignment, IP resolution near beam resolution

- Assuming a beam spot size of 30µm
- Current performance is approaching design spec

Z-> e⁺e⁻ Candidates

Z-> μ⁺μ⁻ Candidates

W -> en+jets Candidates

- QCD background derived from low E_T^{miss} data
- ?Ldt = 7 pb^{-1}

- Background subtracted
- Signal efficiency from Z's
- Obeys Berends scaling Ken Johns HCP2002

W -> µn+jets Candidate

b-tagging

- Tagging with soft leptons
 - Dijet events with an associated muon tag
 - Work on electron tagging in progress

Tagging via Impact Parameter

b-tagging

- Secondary vertex tag in jets
- Secondary vertex tag in muons plus jets

Run IIa Top Mass

- Improved particle ID using improved detector
 - Particle ID efficiency errors should decrease with higher statistics
- Reduced statistical error
 - ◆ Increases in Tevatron energy and integrated luminosity should provide ~40x increase in data for top and background studies
- Reduced systematic errors
 - ◆ Increased statistics of ? + jets and Z+jets, Z -> b-bbar (via silicon track trigger), and hadronic W in top decays should decrease jet energy scale error < 1 GeV</p>
 - ◆ Improved Monte Carlo modeling of signal and (W+jets) background and constraints to data should decrease these errors
- Improved analysis techniques
 - Matrix element method

Run IIa Top Mass

- Indirect constraint of the Higgs mass
 - Goals of 2 GeV and 30 MeV errors in Runlla measurements of m_t and m_W
 - Goals of 1 GeV and 15-20 MeV errors in Run IIb measurements of m_t and m_W

Other Run IIa Top Physics

- t-tbar and single top cross sections
 - ◆ Former is sensitive to anomalous couplings
 - Latter is a direct measurement of G(t->Wb) and |V_{tb}|
 - ♦ In Run I, DØ search for single top resulted in limits of $s_s < 17$ pb and $s_t < 22$ pb (compared to expected SM values of 0.73 and 1.73 pb)
- Decay properties
 - ♦ W helicities, kinematic distributions, rare and non-SM decays (t -> ?q, Zq, t-> H+b, ...)
- Production properties
 - ◆ Resonance search in m_{t-tbar}, spin correlations, ...

Run IIb and Top

- Tevatron plan is 2 fb⁻¹ by 2004 (Run IIa) and 15 fb⁻¹ by 2008 (Run IIb)
 - ◆ Increase number and efficiency of p-bars
- DØ will upgrade the SMT and hardware trigger systems between Run IIa and IIb
 - ◆ Six-layer silicon with six axial and four stereo layers including an LO at r=18mm
 - New L1 calorimeter, L1 central track trigger, and L2 silicon track trigger hardware
- Primary physics objective is the Higgs hunt
 - p-pbar -> t-tbar H?
 - SM properties and non-SM physics of top

Run IIa and Run IIb Top Reach

	Run1	2fb ⁻¹	15fb ⁻¹
	prec.		
M _t (combined)	2.9%	1.5%	0.8%
σ(ttbar)	25%	10%	5%
W helicity, F ₀	0.4	0.09	0.04
W helicity, F ₊	0.15	0.03	0.01
R=BR(t->Wb)/BR(t->Wq)	30%	4.5%	0.8%
$ V_{tb} $, lower limit at 90% C.L.	>0.05	>0.25	>0.50
σ (single top)	-	20%	8%
$\Gamma(t->Wb)$	-	25%	10%
$ V_{tb} $	-	12%	5%
BR(t->gq) at 95%CL	0.03	2 x 10 ⁻³	2 x 10 ⁻⁴
BR(t->Zq) at 95%CL	0.30	0.02	2×10^{-3}

Conclusions

- Both the Tevatron accelerator and DØ experiment have moved into stable operation
 - Additional (adiabatic) improvements are expected in both
- DØ has made a good start towards rediscovering top
 - Serious searches for top in all channels have begun
 - ◆ Results from 50 pb⁻¹ are expected by spring
- Run IIa will provide a rich spectrum of top physics (and hopefully some new discoveries)